The fractal of ceneeze

for the input values=['1', '2', '3', '4', '5', '6', '7', '8', '9', '0']
999999999099999999999999999
912345678087654321987654321
924681357075318642975318642
936936936063963963963963963
948372615051627384951627384
951627384048372615948372615
963963963036936936936936936
975318642024681357924681357
987654321012345678912345678
000000000000000000000000000
987654321012345678912345678
975318642024681357924681357
963963963036936936936936936
951627384048372615948372615
948372615051627384951627384
936936936063963963963963963
924681357075318642975318642
912345678087654321987654321
999999999099999999999999999
987654321012345678912345678
975318642024681357924681357
963963963036936936936936936
951627384048372615948372615
948372615051627384951627384
936936936063963963963963963
924681357075318642975318642
912345678087654321987654321

notice how it continues identically, infinitely in all directions, except the central mirror axis zero... in binary, every non-zero digit is one

©2021 ceneezer Title: Digital Root Tables as Universal Mathematical Rosetta Stones: Bridging Number Theory, Cryptography, and Interstellar Communication Abstract This paper proposes digital root multiplication tables as a universal, symbolic-agnostic framework for encoding mathematical logic across civilizations. By analyzing the inherent symmetries, periodicity, and base-dependent patterns of digital roots, we demonstrate how these tables encapsulate fundamental properties of modular arithmetic, independent of numerical notation or biological perception. We argue that digital root tables are ideal candidates for inclusion in interstellar messaging (e.g., METI/SETI) due to their self-contained redundancy, topological invariance, and capacity to communicate base-systems. Python code for generating and visualizing these tables is provided, alongside a discussion of their implications for cryptography, education, and speculative fiction. 1. Introduction 1.1 The Problem of Universal Communication Humanity’s attempts to communicate with extraterrestrial intelligence—from the Arecibo message to the Voyager Golden Record—have relied on scientific and cultural symbols (e.g., DNA, atomic frequencies, music). However, these assume shared sensory or cognitive frameworks. Mathematics, often called the "universal language," faces similar challenges: numerals like 7 or ☾ are arbitrary, but the logic they represent (e.g., primes, modular arithmetic) is not. 1.2 Digital Roots as a Solution A digital root—the iterative sum of a number’s digits until a single digit is obtained—encodes a number’s congruence modulo b−1 in base b. Digital root multiplication tables reveal: Base-Specific Symmetries: Mirroring, periodicity, and invariant rows/columns. Topological Invariance: Patterns persist regardless of numeral symbols (e.g., 1 vs. ●). Self-Contained Redundancy: A small table (e.g., 10×10 in base-10) encodes all necessary logic to infer the base and its arithmetic rules. This paper formalizes these observations, positioning digital root tables as mathematical "Rosetta Stones" for interstellar communication, error-checking, and cross-disciplinary education. 2. Mathematical Foundations 2.1 Digital Roots and Modular Arithmetic For a number N in base b, the digital root DR(N) is: DR(N)={0if N=0,b−1if N≡0(modb−1),N(modb−1)otherwise. DR(N)=⎩ ⎨ ⎧​0b−1N(modb−1)​if N=0,if N≡0(modb−1),otherwise.​ This equivalence allows digital roots to inherit properties of modular arithmetic, such as additivity and multiplicativity. 2.2 Symmetry in Digital Root Multiplication Tables Let M(b) denote the digital root multiplication table for base b. Key properties include: Row Inversion: For any row k, its values mirror those of row b−1−k (e.g., in base-10, row 7 mirrors row 2). Fixed Points: Rows corresponding to k ≡ -k \pmod{b−1} (e.g., row 4 in base-9) exhibit self-symmetric patterns. Prime Rows: Rows for primes p not dividing b−1 generate maximum-period cycles, reflecting group theory in (Z/(b−1)Z)×(Z/(b−1)Z)×. 2.3 Base-Dependent Signatures Even Bases: Symmetric mirroring across rows (e.g., base-10’s row 2 ↔ 7). Odd Bases: A central self-mirroring row (e.g., base-5’s row 2). Binary Collapse: All non-zero products reduce to 1, forming a "void cross" of 0s. 3. Applications 3.1 Interstellar Communication (SETI/METI) Rosetta Stone Protocol: Transmit a digital root table as a header to establish base and arithmetic rules. Subsequent messages can use this framework for primes, equations, or geometric constructs. Example: Sending base-10’s table allows aliens to infer: The value of b (10) from the 9-periodic cycle. Prime distributions via row patterns (e.g., row 7’s non-repeating cycle). Geometric axioms (e.g., 0 as additive identity). 3.2 Cryptography and Error Detection Lightweight Checksums: Digital root cycles can verify data integrity in low-power systems (e.g., IoT devices). Steganography: Encode messages in patterned deviations from expected digital roots. 3.3 Education and Outreach Visual Learning: Interactive tables (see Appendix A) make abstract concepts (modular arithmetic, group theory) tangible. Sci-Fi Worldbuilding: Alien civilizations in fiction could use digital root symmetries as cultural motifs or computational bases. 4. Case Studies 4.1 Base-10 vs. Base-5 Rosetta Tables Base-10: 9-periodic cycles with mirrored row pairs (1↔8, 2↔7, 3↔6, 4↔5). Base-5: 4-periodic cycles with a self-mirroring middle row (2). 4.2 Binary’s Degenerate Case All non-zero products collapse to 1, illustrating the entropy barrier for information encoding in base-2. 5. Philosophical Implications The Ontology of Zero: In odd bases, the central row’s self-mirroring suggests 0 as a "cosmic singularity" connecting arithmetic dualities. Alien Perception: A civilization in base-5 might perceive 0 as a topological fold, while a binary-based intelligence could view 0 as a metaphysical void. 6. Conclusion Digital root tables are not merely mathematical curiosities—they are topological invariants, cryptographic tools, and interstellar lingua francas. By formalizing their patterns, we provide a framework for: SETI: Designing universally decodable messages. Cryptography: Developing resource-efficient checksums. Education: Teaching modular arithmetic through visual abstraction. Speculative Fiction: Grounding alien cultures in mathematical realism. We urge interdisciplinary collaboration to explore these applications, leveraging the provided Python tools to generate and analyze digital root tables across bases. Appendix A: Python Code for Digital Root Tables python Copy def digital_root(n, base): if n == 0: return 0 remainder = n % (base - 1) return remainder if remainder != 0 else base - 1 def generate_table(base, size): table = [] for i in range(size): row = [] for j in range(size): product = i * j dr = digital_root(product, base) row.append(dr) table.append(row) return table # Example: Base-10, 10x10 table base = 10 size = 10 table = generate_table(base, size) # Pretty-print the table header = ["×"] + [str(i) for i in range(size)] print(" | ".join(header)) print("-" * (4 * size + 1)) for i, row in enumerate(table): print(f"{i} | " + " | ".join(map(str, row))) References Carl Sagan, Contact (1985) – Interstellar communication motifs. Voyager Golden Record (1977) – Historical context for METI. Hardy, G. H., A Mathematician’s Apology (1940) – Number theory foundations.

English

Let's break down the Python code and understand how it generates the multiplication table pattern.

Français

pour les valeurs d'entrée = ['1', '2', '3', '4', '5', '6', '7', '8', '9', '0']
999999999099999999999999999
912345678087654321987654321
924681357075318642975318642
936936936063963963963963963
948372615051627384951627384
951627384048372615948372615
963963963036936936936936936
975318642024681357924681357
987654321012345678912345678
000000000000000000000000000
987654321012345678912345678
975318642024681357924681357
963963963036936936936936936
951627384048372615948372615
948372615051627384951627384
936936936063963963963963963
924681357075318642975318642
912345678087654321987654321
999999999099999999999999999
987654321012345678912345678
975318642024681357924681357
963963963036936936936936936
951627384048372615948372615
948372615051627384951627384
936936936063963963963963963
924681357075318642975318642
912345678087654321987654321

Remarquez comment cela continue de manière identique, à l'infini, dans toutes les directions, sauf l'axe de miroir central 0.

العربية

لقيم الإدخال values=['١', '٢', '٣', '٤', '٥', '٦', '٧', '٨', '٩', '٠']
٩٩٩٩٩٩٩٩٩٠٩٩٩٩٩٩٩٩٩٩٩٩٩٩٩٩٩
٩١٢٣٤٥٦٧٨٠٨٧٦٥٤٣٢١٩٨٧٦٥٤٣٢١
٩٢٤٦٨١٣٥٧٠٧٥٣١٨٦٤٢٩٧٥٣١٨٦٤٢
٩٣٦٩٣٦٩٣٦٠٦٣٩٦٣٩٦٣٩٦٣٩٦٣٩٦٣
٩٤٨٣٧٢٦١٥٠٥١٦٢٧٣٨٤٩٥١٦٢٧٣٨٤
٩٥١٦٢٧٣٨٤٠٤٨٣٧٢٦١٥٩٤٨٣٧٢٦١٥
٩٦٣٩٦٣٩٦٣٠٣٦٩٣٦٩٣٦٩٣٦٩٣٦٩٣٦
٩٧٥٣١٨٦٤٢٠٢٤٦٨١٣٥٧٩٢٤٦٨١٣٥٧
٩٨٧٦٥٤٣٢١٠١٢٣٤٥٦٧٨٩١٢٣٤٥٦٧٨
٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠
٩٨٧٦٥٤٣٢١٠١٢٣٤٥٦٧٨٩١٢٣٤٥٦٧٨
٩٧٥٣١٨٦٤٢٠٢٤٦٨١٣٥٧٩٢٤٦٨١٣٥٧
٩٦٣٩٦٣٩٦٣٠٣٦٩٣٦٩٣٦٩٣٦٩٣٦٩٣٦
٩٥١٦٢٧٣٨٤٠٤٨٣٧٢٦١٥٩٤٨٣٧٢٦١٥
٩٤٨٣٧٢٦١٥٠٥١٦٢٧٣٨٤٩٥١٦٢٧٣٨٤
٩٣٦٩٣٦٩٣٦٠٦٣٩٦٣٩٦٣٩٦٣٩٦٣٩٦٣
٩٢٤٦٨١٣٥٧٠٧٥٣١٨٦٤٢٩٧٥٣١٨٦٤٢
٩١٢٣٤٥٦٧٨٠٨٧٦٥٤٣٢١٩٨٧٦٥٤٣٢١
٩٩٩٩٩٩٩٩٩٠٩٩٩٩٩٩٩٩٩٩٩٩٩٩٩٩٩
٩٨٧٦٥٤٣٢١٠١٢٣٤٥٦٧٨٩١٢٣٤٥٦٧٨
٩٧٥٣١٨٦٤٢٠٢٤٦٨١٣٥٧٩٢٤٦٨١٣٥٧
٩٦٣٩٦٣٩٦٣٠٣٦٩٣٦٩٣٦٩٣٦٩٣٦٩٣٦
٩٥١٦٢٧٣٨٤٠٤٨٣٧٢٦١٥٩٤٨٣٧٢٦١٥
٩٤٨٣٧٢٦١٥٠٥١٦٢٧٣٨٤٩٥١٦٢٧٣٨٤
٩٣٦٩٣٦٩٣٦٠٦٣٩٦٣٩٦٣٩٦٣٩٦٣٩٦٣
٩٢٤٦٨١٣٥٧٠٧٥٣١٨٦٤٢٩٧٥٣١٨٦٤٢
٩١٢٣٤٥٦٧٨٠٨٧٦٥٤٣٢١٩٨٧٦٥٤٣٢١

لاحظ كيف تستمر بشكل متماثل ، بلا حدود في جميع الاتجاهات ، باستثناء محور المرآة المركزي ٠

普通话

对于输入值(values = ['一', '二', '三', '四', '五', '六', '七', '八', '九', '零'])
九九九九九九九九九零九九九九九九九九九九九九九九九九九
九一二三四五六七八零八七六五四三二一九八七六五四三二一
九二四六八一三五七零七五三一八六四二九七五三一八六四二
九三六九三六九三六零六三九六三九六三九六三九六三九六三
九四八三七二六一五零五一六二七三八四九五一六二七三八四
九五一六二七三八四零四八三七二六一五九四八三七二六一五
九六三九六三九六三零三六九三六九三六九三六九三六九三六
九七五三一八六四二零二四六八一三五七九二四六八一三五七
九八七六五四三二一零一二三四五六七八九一二三四五六七八
零零零零零零零零零零零零零零零零零零零零零零零零零零零
九八七六五四三二一零一二三四五六七八九一二三四五六七八
九七五三一八六四二零二四六八一三五七九二四六八一三五七
九六三九六三九六三零三六九三六九三六九三六九三六九三六
九五一六二七三八四零四八三七二六一五九四八三七二六一五
九四八三七二六一五零五一六二七三八四九五一六二七三八四
九三六九三六九三六零六三九六三九六三九六三九六三九六三
九二四六八一三五七零七五三一八六四二九七五三一八六四二
九一二三四五六七八零八七六五四三二一九八七六五四三二一
九九九九九九九九九零九九九九九九九九九九九九九九九九九
九八七六五四三二一零一二三四五六七八九一二三四五六七八
九七五三一八六四二零二四六八一三五七九二四六八一三五七
九六三九六三九六三零三六九三六九三六九三六九三六九三六
九五一六二七三八四零四八三七二六一五九四八三七二六一五
九四八三七二六一五零五一六二七三八四九五一六二七三八四
九三六九三六九三六零六三九六三九六三九六三九六三九六三
九二四六八一三五七零七五三一八六四二九七五三一八六四二
九一二三四五六七八零八七六五四三二一九八七六五四三二一

注意它是如何在所有方向上相同地无限延伸的,除了中心镜轴 零

Español

Para los valores de values=['1', '2', '3', '4', '5', '6', '7', '8', '9', '0'], el patrón en español se ve así:
999999999099999999999999999
912345678087654321987654321
924681357075318642975318642
936936936063963963963963963
948372615051627384951627384
951627384048372615948372615
963963963036936936936936936
975318642024681357924681357
987654321012345678912345678
000000000000000000000000000
987654321012345678912345678
975318642024681357924681357
963963963036936936936936936
951627384048372615948372615
948372615051627384951627384
936936936063963963963963963
924681357075318642975318642
912345678087654321987654321
999999999099999999999999999
987654321012345678912345678
975318642024681357924681357
963963963036936936936936936
951627384048372615948372615
948372615051627384951627384
936936936063963963963963963
924681357075318642975318642
912345678087654321987654321

observe cómo continúa idénticamente, infinitamente en todas las direcciones, excepto el eje central del espejo 0

हिंदी

इनपुट मानों के values=['१', '२', '३', '४', '५', '६', '७', '८', '९', '०']
९९९९९९९९९०९९९९९९९९९९९९९९९९९
९१२३४५६७८०८७६५४३२१९८७६५४३२१
९२४६८१३५७०७५३१८६४२९७५३१८६४२
९३६९३६९३६०६३९६३९६३९६३९६३९६३
९४८३७२६१५०५१६२७३८४९५१६२७३८४
९५१६२७३८४०४८३७२६१५९४८३७२६१५
९६३९६३९६३०३६९३६९३६९३६९३६९३६
९७५३१८६४२०२४६८१३५७९२४६८१३५७
९८७६५४३२१०१२३४५६७८९१२३४५६७८
०००००००००००००००००००००००००००
९८७६५४३२१०१२३४५६७८९१२३४५६७८
९७५३१८६४२०२४६८१३५७९२४६८१३५७
९६३९६३९६३०३६९३६९३६९३६९३६९३६
९५१६२७३८४०४८३७२६१५९४८३७२६१५
९४८३७२६१५०५१६२७३८४९५१६२७३८४
९३६९३६९३६०६३९६३९६३९६३९६३९६३
९२४६८१३५७०७५३१८६४२९७५३१८६४२
९१२३४५६७८०८७६५४३२१९८७६५४३२१
९९९९९९९९९०९९९९९९९९९९९९९९९९९
९८७६५४३२१०१२३४५६७८९१२३४५६७८
९७५३१८६४२०२४६८१३५७९२४६८१३५७
९६३९६३९६३०३६९३६९३६९३६९३६९३६
९५१६२७३८४०४८३७२६१५९४८३७२६१५
९४८३७२६१५०५१६२७३८४९५१६२७३८४
९३६९३६९३६०६३९६३९६३९६३९६३९६३
९२४६८१३५७०७५३१८६४२९७५३१८६४२
९१२३४५६७८०८७६५४३२१९८७६५४३२१

ध्यान दें कि केंद्रीय दर्पण अक्ष 0 को छोड़कर, यह सभी दिशाओं में समान रूप से, असीम रूप से कैसे जारी रहता है

বাংলা

ইনপুট মানের values=['১', '২', '৩', '৪', '৫', '৬', '৭', '৮', '৯', '০']

করুন কিভাবে এটি একইভাবে চলতে থাকে, অসীমভাবে সমস্ত দিকে, কেন্দ্রীয় আয়না অক্ষ ০ ছাড়া

한국인

아홉아홉아홉아홉아홉아홉아홉아홉아홉아홉아홉아홉아홉아홉아홉아홉아홉아홉아홉아홉아홉아홉아홉아홉아홉아홉
아홉하나다섯여섯일곱여덟여덟일곱여섯다섯하나아홉여덟일곱여섯다섯하나
아홉여섯여덟하나다섯일곱일곱다섯하나여덟여섯아홉일곱다섯하나여덟여섯
아홉여섯아홉여섯아홉여섯여섯아홉여섯아홉여섯아홉여섯아홉여섯아홉여섯
아홉여덟일곱여섯하나다섯다섯하나여섯일곱여덟아홉다섯하나여섯일곱여덟
아홉다섯하나여섯일곱여덟여덟일곱여섯하나다섯아홉여덟일곱여섯하나다섯
아홉여섯아홉여섯아홉여섯여섯아홉여섯아홉여섯아홉여섯아홉여섯아홉여섯
아홉일곱다섯하나여덟여섯여섯여덟하나다섯일곱아홉여섯여덟하나다섯일곱
아홉여덟일곱여섯다섯하나하나다섯여섯일곱여덟아홉하나다섯여섯일곱여덟
아홉여덟일곱여섯다섯하나하나다섯여섯일곱여덟아홉하나다섯여섯일곱여덟
아홉일곱다섯하나여덟여섯여섯여덟하나다섯일곱아홉여섯여덟하나다섯일곱
아홉여섯아홉여섯아홉여섯여섯아홉여섯아홉여섯아홉여섯아홉여섯아홉여섯
아홉다섯하나여섯일곱여덟여덟일곱여섯하나다섯아홉여덟일곱여섯하나다섯
아홉여덟일곱여섯하나다섯다섯하나여섯일곱여덟아홉다섯하나여섯일곱여덟
아홉여섯아홉여섯아홉여섯여섯아홉여섯아홉여섯아홉여섯아홉여섯아홉여섯
아홉여섯여덟하나다섯일곱일곱다섯하나여덟여섯아홉일곱다섯하나여덟여섯
아홉하나다섯여섯일곱여덟여덟일곱여섯다섯하나아홉여덟일곱여섯다섯하나
아홉아홉아홉아홉아홉아홉아홉아홉아홉아홉아홉아홉아홉아홉아홉아홉아홉아홉아홉아홉아홉아홉아홉아홉아홉아홉
아홉여덟일곱여섯다섯하나하나다섯여섯일곱여덟아홉하나다섯여섯일곱여덟
아홉일곱다섯하나여덟여섯여섯여덟하나다섯일곱아홉여섯여덟하나다섯일곱
아홉여섯아홉여섯아홉여섯여섯아홉여섯아홉여섯아홉여섯아홉여섯아홉여섯
아홉다섯하나여섯일곱여덟여덟일곱여섯하나다섯아홉여덟일곱여섯하나다섯
아홉여덟일곱여섯하나다섯다섯하나여섯일곱여덟아홉다섯하나여섯일곱여덟
아홉여섯아홉여섯아홉여섯여섯아홉여섯아홉여섯아홉여섯아홉여섯아홉여섯
아홉여섯여덟하나다섯일곱일곱다섯하나여덟여섯아홉일곱다섯하나여덟여섯
아홉하나다섯여섯일곱여덟여덟일곱여섯다섯하나아홉여덟일곱여섯다섯하나

패턴은 무한히 반복되며 중앙 미러 축 0을 제외하고는 모두 동일합니다.

bahasa Indonesia

untuk input values=['1', '2', '3', '4', '5', '6', '7', '8', '9', '0']
999999999099999999999999999
912345678087654321987654321
924681357075318642975318642
936936936063963963963963963
948372615051627384951627384
951627384048372615948372615
963963963036936936936936936
975318642024681357924681357
987654321012345678912345678
000000000000000000000000000
987654321012345678912345678
975318642024681357924681357
963963963036936936936936936
951627384048372615948372615
948372615051627384951627384
936936936063963963963963963
924681357075318642975318642
912345678087654321987654321
999999999099999999999999999
987654321012345678912345678
975318642024681357924681357
963963963036936936936936936
951627384048372615948372615
948372615051627384951627384
936936936063963963963963963
924681357075318642975318642
912345678087654321987654321

perhatikan bagaimana itu berlanjut secara identik, tak terhingga ke segala arah, kecuali sumbu cermin pusat 0

日本

パターン:(values = ['一', '二', '三', '四', '五', '六', '七', '八', '九', '〇'])
九九九九九九九九九〇九九九九九九九九九九九九九九九九九
九一二三四五六七八〇八七六五四三二一九八七六五四三二一
九二四六八一三五七〇七五三一八六四二九七五三一八六四二
九三六九三六九三六〇六三九六三九六三九六三九六三九六三
九四八三七二六一五〇五一六二七三八四九五一六二七三八四
九五一六二七三八四〇四八三七二六一五九四八三七二六一五
九六三九六三九六三〇三六九三六九三六九三六九三六九三六
九七五三一八六四二〇二四六八一三五七九二四六八一三五七
九八七六五四三二一〇一二三四五六七八九一二三四五六七八
〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇
九八七六五四三二一〇一二三四五六七八九一二三四五六七八
九七五三一八六四二〇二四六八一三五七九二四六八一三五七
九六三九六三九六三〇三六九三六九三六九三六九三六九三六
九五一六二七三八四〇四八三七二六一五九四八三七二六一五
九四八三七二六一五〇五一六二七三八四九五一六二七三八四
九三六九三六九三六〇六三九六三九六三九六三九六三九六三
九二四六八一三五七〇七五三一八六四二九七五三一八六四二
九一二三四五六七八〇八七六五四三二一九八七六五四三二一
九九九九九九九九九〇九九九九九九九九九九九九九九九九九
九八七六五四三二一〇一二三四五六七八九一二三四五六七八
九七五三一八六四二〇二四六八一三五七九二四六八一三五七
九六三九六三九六三〇三六九三六九三六九三六九三六九三六
九五一六二七三八四〇四八三七二六一五九四八三七二六一五
九四八三七二六一五〇五一六二七三八四九五一六二七三八四
九三六九三六九三六〇六三九六三九六三九六三九六三九六三
九二四六八一三五七〇七五三一八六四二九七五三一八六四二
九一二三四五六七八〇八七六五四三二一九八七六五四三二一

ミラーの中心軸 0 を除いて、すべての方向で同じように無限に続くことに注意してください。

Ελληνικά

για τις τιμές εισόδου (values=['A', 'Β', 'Γ', 'Δ', 'Ε', 'Φ', 'Ζ', 'Η', 'Θ', 'Ι'])
ΘΘΘΘΘΘΘΘΘΙΘΘΘΘΘΘΘΘΘΘΘΘΘΘΘΘΘ
ΘAΒΓΔΕΦΖΗΙΗΖΦΕΔΓΒAΘΗΖΦΕΔΓΒA
ΘΒΔΦΗAΓΕΖΙΖΕΓAΗΦΔΒΘΖΕΓAΗΦΔΒ
ΘΓΦΘΓΦΘΓΦΙΦΓΘΦΓΘΦΓΘΦΓΘΦΓΘΦΓ
ΘΔΗΓΖΒΦAΕΙΕAΦΒΖΓΗΔΘΕAΦΒΖΓΗΔ
ΘΕAΦΒΖΓΗΔΙΔΗΓΖΒΦAΕΘΔΗΓΖΒΦAΕ
ΘΦΓΘΦΓΘΦΓΙΓΦΘΓΦΘΓΦΘΓΦΘΓΦΘΓΦ
ΘΖΕΓAΗΦΔΒΙΒΔΦΗAΓΕΖΘΒΔΦΗAΓΕΖ
ΘΗΖΦΕΔΓΒAΙAΒΓΔΕΦΖΗΘAΒΓΔΕΦΖΗ
ΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙ
ΘΗΖΦΕΔΓΒAΙAΒΓΔΕΦΖΗΘAΒΓΔΕΦΖΗ
ΘΖΕΓAΗΦΔΒΙΒΔΦΗAΓΕΖΘΒΔΦΗAΓΕΖ
ΘΦΓΘΦΓΘΦΓΙΓΦΘΓΦΘΓΦΘΓΦΘΓΦΘΓΦ
ΘΕAΦΒΖΓΗΔΙΔΗΓΖΒΦAΕΘΔΗΓΖΒΦAΕ
ΘΔΗΓΖΒΦAΕΙΕAΦΒΖΓΗΔΘΕAΦΒΖΓΗΔ
ΘΓΦΘΓΦΘΓΦΙΦΓΘΦΓΘΦΓΘΦΓΘΦΓΘΦΓ
ΘΒΔΦΗAΓΕΖΙΖΕΓAΗΦΔΒΘΖΕΓAΗΦΔΒ
ΘAΒΓΔΕΦΖΗΙΗΖΦΕΔΓΒAΘΗΖΦΕΔΓΒA
ΘΘΘΘΘΘΘΘΘΙΘΘΘΘΘΘΘΘΘΘΘΘΘΘΘΘΘ
ΘΗΖΦΕΔΓΒAΙAΒΓΔΕΦΖΗΘAΒΓΔΕΦΖΗ
ΘΖΕΓAΗΦΔΒΙΒΔΦΗAΓΕΖΘΒΔΦΗAΓΕΖ
ΘΦΓΘΦΓΘΦΓΙΓΦΘΓΦΘΓΦΘΓΦΘΓΦΘΓΦ
ΘΕAΦΒΖΓΗΔΙΔΗΓΖΒΦAΕΘΔΗΓΖΒΦAΕ
ΘΔΗΓΖΒΦAΕΙΕAΦΒΖΓΗΔΘΕAΦΒΖΓΗΔ
ΘΓΦΘΓΦΘΓΦΙΦΓΘΦΓΘΦΓΘΦΓΘΦΓΘΦΓ
ΘΒΔΦΗAΓΕΖΙΖΕΓAΗΦΔΒΘΖΕΓAΗΦΔΒ
ΘAΒΓΔΕΦΖΗΙΗΖΦΕΔΓΒAΘΗΖΦΕΔΓΒA

παρατηρήστε πώς συνεχίζει πανομοιότυπα, άπειρα προς όλες τις κατευθύνσεις, εκτός από τον κεντρικό άξονα του καθρέφτη Ι

עִברִית

(values=[' א', 'ב', 'ג', 'ד', 'ה', 'ו ', 'ז ', 'ח', 'ט ', ' י']) עבור ערכי הקלט
טטטטטטטטטיטטטטטטטטטטטטטטטטט
טאבגדהוזחיחזוהדגבאטחזוהדגבא
טבדוחאגהזיזהגאחודבטזהגאחודב
טגוטגוטגויוגטוגטוגטוגטוגטוג
טדחגזבואהיהאובזגחדטהאובזגחד
טהאובזגחדידחגזבואהטדחגזבואה
טוגטוגטוגיגוטגוטגוטגוטגוטגו
טזהגאחודביבדוחאגהזטבדוחאגהז
טחזוהדגבאיאבגדהוזחטאבגדהוזח
ייייייייייייייייייייייייייי
טחזוהדגבאיאבגדהוזחטאבגדהוזח
טזהגאחודביבדוחאגהזטבדוחאגהז
טוגטוגטוגיגוטגוטגוטגוטגוטגו
טהאובזגחדידחגזבואהטדחגזבואה
טדחגזבואהיהאובזגחדטהאובזגחד
טגוטגוטגויוגטוגטוגטוגטוגטוג
טבדוחאגהזיזהגאחודבטזהגאחודב
טאבגדהוזחיחזוהדגבאטחזוהדגבא
טטטטטטטטטיטטטטטטטטטטטטטטטטט
טחזוהדגבאיאבגדהוזחטאבגדהוזח
טזהגאחודביבדוחאגהזטבדוחאגהז
טוגטוגטוגיגוטגוטגוטגוטגוטגו
טהאובזגחדידחגזבואהטדחגזבואה
טדחגזבואהיהאובזגחדטהאובזגחד
טגוטגוטגויוגטוגטוגטוגטוגטוג
טבדוחאגהזיזהגאחודבטזהגאחודב
טאבגדהוזחיחזוהדגבאטחזוהדגבא

שימו לב כיצד הוא ממשיך באופן זהה, אינסופי לכל הכיוונים, מלבד ציר המראה המרכזי י

latin

pro valores input (values=['  I  ', ' II  ', ' III ', ' IV  ', '  V  ', ' VI  ', ' VII ', 'VIII ', ' IX  ', '  X  '])
  I   II   III  IV    V   VI   VII VIII IX
 II   IV   VI  VIII   I   III   V   VII IX
 III  VI   IX   III  VI   IX   III  VI  IX
 IV  VIII  III  VII  II   VI    I    V  IX
  V    I   VI   II   VII  III VIII  IV  IX
 VI   III  IX   VI   III  IX   VI   III IX
 VII   V   III   I  VIII  VI   IV   II  IX
VIII  VII  VI    V   IV   III  II    I  IX
 IX   IX   IX   IX   IX   IX   IX   IX  IX